
Computing Just What You Need: Online Data
Analysis and Reduction at Extreme Scales

Ian Foster1,2, Mark Ainsworth3, Bryce Allen2, Julie Bessac1, Franck Cappello1,
Jong Youl Choi4, Emil Constantinescu1, Phillip Davis6, Sheng Di1, Wendy Di1,

Hanqi Guo1, Scott Klasky3, Kerstin Kleese Van Dam5, Tahsin Kurc7,
Abid Malik5, Kshitij Mehta4, Klaus Mueller7, Todd Munson1,2,

George Ostouchov4, Manish Parashar6, Tom Peterka1, Line Pouchard5,
Dingwen Tao1, Ozan Tugluk3, Stefan Wild1, Matthew Wolf3,

Justin Wozniak1, Wei Xu5, and Shinjae Yoo5

1 Argonne National Laboratory, Lemont, Illinois, USA
2 University of Chicago, Chicago, Illinois, USA

3 Brown University, Providence, Rhode Island, USA
4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

5 Brookhaven National Laboratory, Brookhaven, New York, USA
6 Rutgers University, New Brunswick, New Jersey, USA
7 Stony Brook University, Stony Brook, New York, USA

Abstract. A growing disparity between supercomputer computation
speeds and I/O rates makes it increasingly infeasible for applications to
save all results for offline analysis. Instead, applications must analyze and
reduce data online so as to output only those results needed to answer
target scientific question(s). This change in focus complicates application
and experiment design and introduces algorithmic, implementation, and
programming model challenges that are unfamiliar to many scientists
and that have major implications for the design of various elements of
supercomputer systems. We review these challenges and describe meth-
ods and tools that we are developing to enable experimental exploration
of algorithmic, software, and system design alternatives.

1 Introduction

Technology trends are creating a crisis in high performance computing. Com-
puter speeds are increasing much faster than are storage technology capacities
and I/O rates. For example, the Mira supercomputer installed at Argonne Na-
tional Laboratory in 2012 has a peak compute rate of 10 petaflop/s (1016 op/s)
and disk write rate of 500 GB/s (5×1011 bytes/s). By 2024, computers are pro-
jected to compute at 1018 ops/sec but write to disk only at 1012 bytes/sec: a
compute-to-output ratio 50 times worse. Figure 1 provides another perspective
on this trend. We can no longer output every piece of information that we might
ever possibly want. Instead, we need to output just the information that we
need to answer some question(s). This new goal requires new thinking about the
design and implementation of both applications and system software.

2

Fig. 1: Total filesystem through-
put of leadership class facilities vs.
total floating point operations per
second [28,35,47]. I/O throughput
scales more slowly than computa-
tional speed.

Increasing use of supercomputers for
near-real-time decision making is another
factor motivating new thinking about
application and system software design.
For example, both experimental fusion
energy experiments and next-generation
light sources are moving to a new fron-
tier where data must be processed rapidly
to enable near-real-time decisions. It is no
longer feasible to input experimental data,
perform some computation (e.g., simu-
lation of the experiment’s future trajec-
tory), and then output results for later
analysis. Data must be processed imme-
diately to detect significant events (e.g.,
vortices in a fusion experiment, features
in microtomography) in order to permit rapid feedback to the experiment.

In both purely computational and coupled experimental–computational stud-
ies, these growing disparities between computational speeds and I/O rates de-
mand new application structures that link previously disjoint activities: experi-
ment, simulation, data analysis, data reduction. Yet while many algorithms and
tools exist to treat separate pieces of such problems, these capabilities are often
inoperable or inaccessible to the research scientist. Scientists need new tools for
coupling components and new methods for co-optimizing the resulting work-
flows. These tasks introduce algorithmic, implementation, and programming
model challenges that are unfamiliar to many scientists and that have major
implications for the design of various elements of high performance systems.

The Codesign center for Online Data Analysis and Reduction (CODAR) en-
gages scientists at three national laboratories and four partner universities, to
address these challenges. Working closely with applications teams, CODAR is
undertaking a codesign process that targets both common data analysis and re-
duction methods (e.g., feature and outlier detection, and compression) and meth-
ods specific to particular data types and domains (e.g., particle and structured
finite-element methods). Our goal is to understand and guide tradeoffs in the
development of computer systems, applications, and software frameworks, given
constraints relating to application development costs and fidelity, performance
portability, scalability, and power efficiency, and to answer these questions:

Q1: What are the best data analysis and reduction algorithms for different ap-
plication classes, in terms of speed, accuracy, and resource needs? How can
we implement those algorithms for scalability and performance portability?

Q2: What are the tradeoffs in data analysis accuracy, resource needs, and overall
performance between online reduction and offline analysis vs. online analysis?
How do these tradeoffs vary with hardware and software choices?

Q3: How do we effectively orchestrate online data analysis and reduction to re-
duce associated overheads? How can hardware and software help?

3

2 Example applications

We use three examples to motivate the need for online data analysis and reduc-
tion.

2.1 Climate science

Climate scientists want to run large ensembles of high-fidelity 1km×1km simu-
lations on exascale systems, with each instance simulating 15 years of climate in
24 hours of computing time. They estimate that outputting the full model state
for each ensemble member once per simulated day would generate 260 TB every
16 seconds across the ensemble, approximately 16× what can be written to the
parallel file system at the expected peak output rate of 1 TB/sec. (Currently,
climate models achieve much lower I/O rates, due to the relatively small size
of model grids.) Furthermore, even following data reduction to 1 TB/sec, such
model runs would output an astonishing 85 PB per day, posing major storage
and offline data analysis challenges.

While 85 PB is a lot of data to output in a day’s computing, this quantity
represents just a small subset of the total data to be produced by the ensemble.
Outputting state just once per simulated day represents a highly lossy reduction,
given that the climate model time step may be just 100 simulated seconds, And
indeed dome analyses may require access to the full state at higher frequency. For
example, feature detection (e.g., tracking cyclones, detecting areas of extreme
heat) may require access to model state once per simulated five minutes, a rate
24×12=288 greater. Clearly, climate models need new online data analysis and
reduction methods that can both preserve more information than once-per-day
snapshots and produce considerably less data.

2.2 Fusion science

Fusion scientists are developing a high-fidelity whole device model for magnet-
ically confined fusion plasmas, for use in planning experiments on the ITER
facility [1] and simulating future experimental fusion devices [7]. The X-point
included Gyrokinetics Code (XGC) [27], one potential component of a whole
device model, models the plasma edge. A single XGC simulation can produce
hundreds of petabytes of data describing particle positions and the state of the
field within which the particles move.

We use this example to illustrate the need for application-aware data re-
duction methods. To reduce this data to manageable sizes, ultimately allowing
100 PB to be reduced to 100 TB, a 1000:1 reduction, fusion scientists and CO-
DAR participants collaborated to devise a multistep data reduction process.
The first step was to simply decrease output frequency. However, this approach
cannot be taken beyond physically relevant time scales; important information
would be lost by decreasing the frequency further. The second step was to use
application knowledge to further reduce the data without losing essential infor-
mation. The XGC particles are assumed to follow a Maxwellian distribution.

4

Therefore, we fitted a distribution to the data and saved the parameters for
the distribution and the particles falling outside that distribution (the “out-
liers”). For the field data, adaptive data reduction methods were used to pre-
serve features (see Figure 2). Finally, generic compression methods were applied
to achieve further data reduction. The reduced data was then output and used
for offline data analysis.

2.3 Materials science

Fig. 2: XGC fusion simulation results
near the plasma edge illustrates the
need for fidelity preserving data re-
duction. The full data for the mag-
netic field ||B|| and the scalar po-
tential φ both show close approxima-
tion to the full solution. However, in
the case of the derived fluid veloc-
ity ∇φ×B‖B‖ , the adaptive method retains
the four major features from the full
data; the uniform method does not.

Materials scientists regularly run
billion-atom atomistic simulations with
femtosecond timesteps on leadership-
class machines [38, 44]. In order to
understand phenomena such as the
structural properties of lignin-based
macromolecules, information essen-
tial for improving biofuel production,
measurable vibrational responses that
arise at the tens of femtoseconds must
be studied, requiring per-timestep
data access. Folding and bonding
properties, however, arise only on
the scale of seconds. Saving the full
state to simultaneously study both
quantities would generate exabytes on
exascale computers. Intelligent, sta-
tistically valid spatial and temporal
data analyses and/or reductions that
can be applied online are needed to
achieve accurate scientific characteri-
zations without the need to save full-
resolution data.

3 A high-performance codesign architecture

Some science teams have already developed application-specific online data anal-
ysis and/or reduction methods on petascale systems, methods they now need to
scale for exascale. Others face the prospect of having to integrate such methods
from scratch as part of their preparation for exascale. In both cases, we want
to make it easy for them to integrate a variety of scalable online data analysis
and reduction methods into their existing infrastructure, so that they can easily
experiment with co-design alternatives and achieve performance portability.

5

3.1 The need for modular implementations

A first key to achieving this goal, we believe, is to modularize implementations so
that analysis and reduction methods, resource allocations, and coupling meth-
ods can be varied with little or no changes to an application. In this way we
facilitate experimentation with design alternatives and investigation of codesign
and performance portability questions.

The key to modular integration of applications with online data analysis and
reduction methods is access to both the application data of interest and meta-
data that describe those data’s structure. Once this access is enabled, it becomes
straightforward to access and exchange the data to be analyzed and/or reduced.
Our team has much experience in instrumenting applications to provide and
use such information, particularly in the context of the Adaptable IO System
(ADIOS) [19, 51] and the Swift [50] system, but also in earlier work [14, 52]. In
many cases, this instrumentation involves adding simple procedure calls, for ex-
ample via the ADIOS application program interface (API) [31], to the application
to indicate the data structures in question. A runtime system can then extract
the specified data and pass it to specified data analysis and reduction services.
Only the runtime implementation, not the application, needs to be modified to
explore alternative implementation strategies, such as processing on the same
or different nodes, using NVRAM, varying clock speeds for power efficiency, or
varying the number of data analysis nodes.

3.2 CODAR system components

These considerations lead us to identify three major classes of CODAR co-
designed technologies (see Figure 3 for an illustration of how they fit together).

The CODAR Data API provides the means by which applications spec-
ify the data to be analyzed and/or reduced and its structure. We leverage the
ADIOS API [26], which has been integrated into more than thirty science appli-
cations [19,33,45,51]. One co-design question will be how to extend this API so
that applications can convey actionable information for exascale optimizations
relating to performance and power efficiency.

CODAR Data Services provide scalable implementations of data analy-
sis and reduction methods, plus ancillary monitoring methods, all packaged to
permit their use by any application. The data reduction methods will provide
effective reduction of the simulation outputs, both the application state and the
results of online data analyses applied to that state, while retaining simulation
fidelity. Data monitoring is needed to verify that a particular data reduction
method is retaining the necessary information and to provide feedback when the
data reduction is either too aggressive or not aggressive enough (see Figure 2).
These services will include a mix of those developed by us and those imported
from other sources. Realistically, we will produce only a modest number of such
implementations ourselves, but our methods and co-design knowledge will be
broadly applicable. Anyone will be able to add generic or application-specific

6

CODAR	Runtime
Reduced	output	and	
reconstruction	info

I/O	
system

Data	API

Running	simulation

Data	analysis

Multivariate	statistics

Feature	analysis

Outlier	detection

Data	reduction

Application-aware

Transforms

Encodings

Data	monitoring

Error	calculation	

Refinement	hints

Data	API

O
ffline	data	analysis

Simulation	knowledge:	Application,	models,	numerics,	performance	optimization, …

Fig. 3: Prototypical data analysis and reduction pipeline, showing how a
simulation communicates to our services through an API that conveys data
and their structure.

data services. An important co-design question here concerns the methods and
support required for efficient execution of a broad range of such services.

The CODAR Runtime provides methods for the deployment, configura-
tion, execution, and computational monitoring of applications and associated
data analysis and reduction pipelines on exascale platforms. Given a specified
set of data analysis, reduction, and monitoring services, it will enable their effi-
cient composition and configuration; their deployment to appropriate nodes and
cores; efficient communication among them; computational monitoring of both
individual services and the complete computation; and adaptation of service
configurations and parameters.

These three sets of co-designed technologies, each to be delivered as open-
source software, will allow application teams, working with or without our ap-
plication catalysts, to instantiate versions of the Figure 3 pipeline to address
their specific science goals. Lessons learned from experiments with diverse ap-
plications, methods, and platforms will in turn feed back to ECP application
projects, software projects, vendors, and other stakeholders.

4 The CODAR runtime

The CODAR Runtime provides methods for controlling the placement and con-
figuration of CODAR Services for purposes of co-design exploration and per-
formance optimization. The initial focus is on simple manual configuration of
service delivery choices; in later stages of the project, we will also provide for
automated configuration, once co-design strategies are better understood. Fig-
ure 4 shows the initial set of components.

The Cheetah experiment management framework defines a set of conven-
tions and re-usable scripts for conducting parameter sweep experiments on dif-
ferent science applications. Such experiments are intended to be run on super-
computers, particularly on existing machines, but may also be run on local work-
stations for debugging. An ‘application’ may be a single science code or, more

7

typically, one or more science codes plus a set of online analysis and reduction
codes that are coupled with the science codes and each other. The goal of such
parameter sweep experiments is to determine the best set of parameters to use
to run the application as efficiently as possible on different target machines. This
‘best’ set of parameters usually varies over different machines.

The Savannah in situ runtime:

– Provides a tested deployment framework for any application (or software
technology) project to utilize online data analysis and reduction.

– Provide the infrastructure needed to create a testing framework (Cheetah)
to evaluate reduction and analysis functions for performance on a variety of
levels (application and platform)

– Provide a reference approach for teams that have specialized needs that
exceed the infrastructure design constraints.

Savannah is not intended to be the only possible way of deploying CODAR-
developed or vetted analytics and reduction functions; multiple cooperating
ecosystems are needed to make the total system thrive. However, Savannah of-
fers a convenient and straight-forward approach, making it easier for applications
to focus on the science, rather than the details of advanced scheduler settings,
rdma network transfers, and other technical details that tend to interfere with
the deployment of online techniques.

Finally, the Chimbuko performance data capture suite captures, analyzes
and visualizes performance metrics for complex scientific workflows and relates
these metrics to the context of their execution on extreme-scale machines to
enable empirical performance studies. Because capturing performance metrics
can quickly escalate in volume and provenance can be highly verbose, Chimbuko
interfaces with (lossy) data compression modules specialized for high-velocity
performance data.

To quantify co-design tradeoffs involved in online data analysis and reduc-
tion for a particular application, an ensemble of executions would be run using

App Reduce

Z-Check

Analysis
dup

Each	box	denotes	a	component,	running	on	1+	nodes,	
that	produces	and/or	consumes	data	via	ADIOS

Application	data

Savannah uses	Swift	to	start	components

Cheetah
configures	and	
dispatches	
experiments

Launch,	monitor,	
control	multiple	
pipeline	instances

Co-design	data

(example	pipeline)

Write	
experiment	

data

CODAR	
campaign	
definition

Chimbuko
captures	and	

outputs	co-design	
performance	data

Other	co-
design	
output	(e.g.,	
Z-Checker)

ADIOS-mediated	output

ADIOS	communications

Fig. 4: The CODAR codesign system, showing in particular the Cheetah
experiment management component and the Savannah runtime.

8

Cheetah and Savannah, each involving an application X plus an analysis A and
a reduction R (e.g., from Z-checker) with different specifications of the infor-
mation that needs to be saved when (e.g., different data reduction mechanisms
and parameters) and what work is to be placed where (e.g., different numbers of
nodes allocated to X, A, and R; X, A, and R allocated to the same or different
nodes; and different mechanisms used to transfer data between components).
Chimbuko would capture the performance information for each member of the
ensemble and enable analysis across the ensemble to answer co-design questions.

5 CODAR data services

We shows in Figure 3 a simplified view of online data analysis in which a process
consumes simulation data and produces extracted information that is communi-
cated back to the simulation and/or sent to a data reduction service for further
processing prior to storage on the parallel file system. More generally, data anal-
ysis methods may extract information from several states—for example, a sliding
window of time—and use results from previous data analysis methods. Our Data
Services are intended to provide the abstraction and connection to the Data API
to implement data analysis methods required by applications and to allow the
composition of these methods via the CODAR Runtime to produce data analysis
workflows.

5.1 Analysis services

Our initial catalog of data analysis methods will concentrate on three broad ar-
eas: (1) multidimensional statistical and image analysis, (2) topological analysis,
and (3) outlier detection and extraction. We will develop this set based on ECP
application requirements and their relevance to important co-design questions,
such as the following. When should a data analysis be performed online versus
offline? How frequently can data analyses be performed online, given a specified
computational budget? How can data analyses make use of increased CPU on-
node concurrency? When do we use burst buffers to stage and extend memory
for online data analysis? How do we take advantage of deep memory hierarchies
for tracking changes over time?

Multidimensional statistical and image analysis Application scientists frequently
find it useful to extract multidimensional statistics and geometrical character-
istics from simulations, since these analyses reflect properties on a larger scale
than do pointwise and time-instant measurements and carry information about
structures, aggregated quantities, and statistical measurements. We will inte-
grate implementations of powerful techniques such as template matching and
segmentation methods to extract structures from multidimensional data. One
example is Markov random field methods that employ clique analysis to identify
structural arrangements of data. Such methods have been parallelized over a
large number of cores through graph partition methods [36].

9

Such methods can be applied, for example, to track the evolution of structures
in time in materials science. Analyzing the formation and progression of cracks,
connectivity lines, pores, and channels in time-lapse data can require extracting
global features. Advanced feature extraction applied to experimental data is
currently an active area, with considerable work [37, 48] relying on template
matching, parallel Markov field methods, and statistical priors.

We will also build on our stochastic flow map [17], which provides understand-
ing of uncertain transport behavior. This map has been successfully applied to
climate [17, 40] and weather [16] applications. We will further develop our data
analysis methods to model multivariate and multiscale features in statistical en-
sembles using the concepts of specific mutual information between variables [6]
and information flows based on association rules [32]. These methods all have a
wide range of applications including climate and combustion.

As an example, climate model ensembles produce a distribution of velocities,
instead of a single velocity at each grid point. These distributions allow climate
scientists to quantify the uncertainty in convergent and divergent transport be-
haviors and in derived features such as eddies, flow segmentation, and large-scale
teleconnections. Tracking these features via stochastic flow maps enables scien-
tists to understand their evolution and advance their scientific mission.

Topological analysis Extracting stable topological features, such as components
(e.g., halos in cosmological simulations), loops, and voids is vital to many appli-
cations. We will integrate persistent homology methods [12,13] to identify stable
features in the data. Their distributions will be summarized in persistence dia-
grams, which are point sets that quantify how much the data needs to change
in order to eliminate any given feature [8]. These diagrams are equipped with
natural metrics [25] (e.g., bottleneck and Wasserstein distances) and are stable
to perturbations of the data with respect to those metrics. We will then measure
the rate of change of topology as the simulation progresses and use this rate to
measure topological deviation.

As an example, an important analysis technique in cosmology involves build-
ing catalogs of dense clusters of matter, called halos, profiling the distribution
of their masses, and studying their evolution over time. These catalogs allow
scientists to compare simulations to each other and to observations, in order to
help identify unknown cosmological parameters. Improved data analysis meth-
ods that incorporate richer topological structures present in the simulations and
use more discriminative comparison methods are essential for cosmological codes
to extract maximum scientific insight.

Outlier detection and extraction Outliers and rare events are the needles that ap-
plication scientists frequently seek in the massive haystack of exascale data. We
will develop semi-supervised machine learning techniques that incorporate exist-
ing prior knowledge (such as a Bayes classifier) within an unsupervised learning
algorithm to select the most relevant targets for later inspection and addition
to a corpus of information. We will integrate the iForest [22] unsupervised ma-
chine learning algorithm to project data into a subspace where outliers deviate

10

sharply from the remaining data, and we will apply kernel-based signatures to
detect outliers [20–22]. This combination is particularly effective in the case of
complex data with extremely high dimensionality [21,22].

5.2 Reduction services

As illustrated in §2, the communication, analysis and storage of data from exas-
cale simulations will only be possible through aggressive data reduction capable
of shrinking datasets by one or more orders of magnitude. Such data reduction
level is not feasible with lossless data reduction (e.g., lossless compression) that
only typically achieve reduction factors of 2 (initial size/reduced size) on scien-
tific data. Only lossy data reduction has the potential to reach reduction factors
of orders of magnitude.

As shown in Figure 3, online data reduction services consume both simulation
outputs and the results from online data analyses and prepare the data to be
written to the parallel file system. A crude but commonly used data reduction
technique is to save data only every s-th time step and use linear interpolation
to approximate the missing values for offline data analysis. This technique can
achieve arbitrary reduction ratios, but it lacks control over the errors. While we
will support this technique, our data reduction goal is to preserve the essential
information in the reduced output while satisfying resource constraints on I/O
bandwidth. Thus, we need data reduction methods that provide control over
errors.

Lossy data reduction is already used in consumer environment and the con-
sumer big data domain is in advance of science in the systematic use of lossy data
reduction. Most photos taken on a smartphone are stored in lossy compressed
form, as are audio and video files. The projection made by CISCO about the
Internet traffic is striking: in 2025, 80% of the Internet traffic will be video
streaming; which means that more than 80% of the data transiting on the In-
ternet will be lossy compressed. Microsoft has already deployed FPGAs into
its data centers to accelerate JPEG compression (among other operations). An
important distinction between the scientific and consumer big data domains is
the specificity of the data reduction techniques. The consumer big data domain
relies on generic lossy compressors (e.g., JPEG for images, MP3 for audio and
MPEG4 for video). Many scientific applications at extreme scale already need
aggressive data reduction. Spatial sampling and decimation in time are used
to reduce data but these techniques also reduce significantly the quality of the
data analytics performed on the sampled or decimated datasets. Advanced lossy
compression techniques provide a solution to this problem by allowing the user
to better control the data reduction error. However, the adoption of lossy data
reduction techniques in the scientific domain is still limited because of the lack of
comprehensive understanding of the errors introduced by lossy data reduction.

Although lossy data reduction is critical to evolve many scientific domains
to the next step, the technology of scientific data reduction and the under-
standing on how to use it are still in their infancy. The first evidence is the
lack of results in this domain: over the 26 years of the prestigious IEEE Data

11

Compression Conferences, only 12 papers identify an aspect of scientific data
in their title (floating-point data, data from simulation, numerical data, scien-
tific data). The second evidence is the poor data lossy reduction performance
on some datasets. Beyond the research on data reduction techniques, scientists
also need to understand how to use lossy data reduction. The classic features
of compressors (integer data compression, floating-point data compression, fast
compression and decompression, error bounds for lossy compressors) do not char-
acterize data reduction algorithms specifically with respect to their integration
into a high-performance computing and data analytics workflow.

The ECP CODAR codesign project is addressing these two gaps by collect-
ing data reduction need from exascale application, investigating and developing
new lossy data reduction algorithms, collecting error assessment needs from ap-
plications and developing a tool, called Z-checker, to assess comprehensively the
error introduced by lossy data reduction.

Lossy scientific data reduction can be done following different approaches.
A first method is to ask application and system developers to design lossy data
reduction technique specific to the application. A good example the LHC, which
already reduces the data produced by the detectors and plans to reduce the
data even more for the run 3 [4]. The raw data per event is about 1MB for Atlas
and CMS, and 100KB for LHCb. Atlas, CMS and LHCb currently produces
events respectively at 100Mhz and 1Ghz for run 2. Run 3 will produce events for
these experiments respectively at 0.4Mhz, 0.5Khz and 40Mhz. These detectors
will produce a gigantic amount of data at an extraordinary rate: 60TB/s for
ATLAS and CMS, 2TB/s for LHCb. To tackle this unprecedented data flow,
the Alice project has defined a new combined offline-online framework called O2
that supports data flows and processing. It performs online compression of events
to reduce data rate to storage to 20 GB/s. For the run 3, the O2 framework
design features 463 FPGAs detector for readout and fast cluster finding, 100,000
CPU cores to compress 1.1 TB/s data streams, 5000 GPUs to speed up the
reconstruction. The different lossy data reduction method is to design and use
generic lossy compressors for scientific data. Several teams have worked and are
still working on this problem. The difficulty here is to develop lossy compressors
that provide excellent data reduction performance for a large variety of scientific
applications: regular mesh, irregular mesh, particle simulation, instrument, etc.

Appropriately chosen reduction methods can improve the information con-
tent of output data. For example, the FLASH hydrodynamics simulation
code [15] is widely used to perform extremely large simulations. Conventionally,
its data is output only every s-th time step, and the remaining data is discarded.
An alternative curve-fitting technique exploits the fact that hydrodynamic flows
are mostly smooth and thus can be greatly reduced by lossy compressors that
nevertheless provide error bounds. Our SZ compressor [41], for example, can
achieve 100:1 reduction for the BLAST2 hydrodynamics data [9].

Currently, the two leading lossy compressors for scientific data are SZ [42,46]
and ZFP [49]. They are error-bounded lossy compressors, meaning that they
respect user-specified error constraints. Each uses a completely different com-

12

pression strategy. One is based on a prediction method and the other one is
transform based. One is better than the other, depending on the application
and the dataset. Research in this domain aims to reach compression factors of
10 for hard to compress data sets and >100 for easy to compress ones. These
two lossy compressors as well as other generic lossy compressors for scientific
data work well for smooth datasets. They are less effective when the data sets
are very irregular and presents large variations. One important aspect of the
CODAR project is to understand what compression algorithm (or sequence of
algorithms) to use according to the characteristics of the datasets. We return to
this question in the next section.

5.3 Monitoring services

Another important distinction between scientific and consumer big data domains
is the difference in quality requirements concerning the reduced data set. JPEG,
MP3 and MPEG4 are not only generic but universal: all users have the same per-
ception of images and sound. Thus, compression quality criteria can be defined
that meet the needs of a large population of users. In science, on the other hand,
each combination of application and data may involve different quality require-
ments. One open question is the relevant set of quality criteria for scientific data
sets. Users have already expressed need to assess spectral alteration, correlation
alteration, the statistical properties of the compression error, the alteration of
first and second order derivatives and more. As the domain of lossy data reduc-
tion for scientific data sets grown, the community will learn what metrics are
relevant and needed.

Another open question is how to express the quality requirements, in par-
ticular when these requirements are in large number with and dependencies.
Perhaps the most important open question is the comprehensive assessment of
the error introduced by lossy data reduction. The classic lossy compressor as-
sessment metrics, PSNR (peak signal to noise ratio) and its extension, the rate
distortion diagram, are not enough to represent the potential impact of the error
on the scientific data sets and the analysis that will be performed from them.
Users are also interested by other distortions (spectral, derivative, distribution)
and other characterization of the error (autocorrelation, distribution). The ECP
CODAR project is developing the Z-checker software framework to provide com-
prehensive assessment of the initial data set properties and of the alterations in-
troduced by lossy data reduction. Z-checker is designed as a community tool and
can integrate analysis modules in C, C++, Fortran and R. Z-checker itself will
evolve as a parallel application to run many analysis concurrently and produce
automatically an assessment report covering user specified analysis.

As illustrated in Figure 2, blindly applying a reduction method can result
in a failure to capture features that are essential for offline analysis. Our data
monitoring services will provide mechanisms to estimate data reduction errors
and provide (1) feedback to the reduction methods so that their tolerances can
be adjusted and (2) reduction error maps for the application scientist. These

13

maps can be imported into offline data analysis routines or visualized to observe
the evolution of reduction errors.

We will first provide a simple monitoring service that computes the data
reduction error by finding the difference between the actual simulation output
or data analyses performed on that output (the ground truth) and the same data
produced using the reduced simulation output (an approximation to the ground
truth). If the ground truth and its approximation are close, then we conclude
that the data reduction is behaving as expected. If they are not close, then we
will provide refinement hints to the CODAR Data Reduction Services that can
include where the data was reduced either too aggressively or not aggressively
enough. A key to monitoring is computing the analysis and difference by using
the reduced data representation without doubling the memory footprint of the
simulation by reconstructing the full set of outputs. As monitoring becomes more
important to applications, additional application-specific monitoring services will
be introduced.

The difference between the ground truth and its approximation will be com-
puted by using a metric. Initially, we will use simple pointwise metrics (e.g., L1,
L2, and L∞) and statistical metrics (e.g., Kullback-Leibler divergence) when
comparing distributions. When possible, we will use the natural metrics specific
to the data analysis (e.g., bottleneck and Wasserstein distances in topological
analysis [25]).

Important questions to be answered include the following. How frequently
should we estimate the reduction error? What data analysis methods and met-
rics should we use for this estimation? How quickly can we provide the refine-
ment hints so that the information provided is actionable? How effective are the
refinement hints at influencing the reduction error?

Z-checker is our tool to explore the features of scientific data sets and un-
derstand the data alteration after (lossy) compression in a systematic and re-
liable way. Z-checker combines a battery of data analysis components relevant
for data compression in an open-source tool for which users and developers can
contribute and add new analysis components based on their additional analy-
sis demand. Currently, Z-checker can be used to characterize critical properties
(such as entropy, distribution, power spectrum, principle component analysis,
auto-correlation) of any data set to improve compression strategies, detect the
compression quality (compression ratio, bit-rate), and provide global distortion
analysis comparing the original data with the decompressed data (peak signal-
to-noise ratio, normalized mean square error , rate-distortion, rate-compression
error, spectral, distribution, derivatives) and statistical analysis of the compres-
sion error (maximum/minimum/average error, autocorrelation, distribution of
errors).

6 Related work

The growing disparity between compute and I/O rates has spurred much work
on high-performance online (also termed, in the case of analyses, “in-situ” and

14

“in-transit”) data analysis and reduction methods [5,10], motivated by a desire
to conserve I/O bandwidth, storage, and/or power; increase accuracy of data
analysis results; and/or make optimal use of parallel platforms [34], among other
factors [3].

Iverson et al. [23].
The problem has spurred various science teams to create custom online data

analysis and reduction techniques [18, 24, 29, 30, 39, 43]. Such work makes clear
the importance of such methods for the successful use of exascale computers. It
also reveals complex relationships between application design, data analysis and
reduction methods, programming models, system software, hardware, and other
elements of an exascale system, particularly given constraints such as applica-
bility, fidelity, performance portability, and power efficiency.

However, the community is far from completely understanding the many co-
design issues posed by online data analysis and reduction. Indeed, as noted in a
recent DOE report many other science teams have not yet developed their own
infrastructure and “newer applications will postpone such implementations.” [2]
For the broader community to leverage and expand the knowledge gained by
early adopters, they will require an effective, usable and sustainable software
infrastructure that allows scientists to use the best techniques to extract the
right information that can then be pushed through the straw to the parallel file
system.

and also on general-purpose methods [11,41]

7 Conclusion

TBD

Acknowledgments

This research was supported in part by the Exascale Computing Project (17-
SC-20-SC) of the U.S. Department of Energy, and by the Advanced Scientific
Research Office (ASCR) at the Department of Energy, under contract DE-AC02-
06CH11357.

References

1. ITER. http://www.iter.org. Visited June 1, 2016.

2. Large scale computing and storage requirements for advanced scientific
computing research: Target 2017. report of the HPC requirements re-
view, 2014. http://www.nersc.gov/assets/HPC-Requirements-for-Science/

ASCR2017/ASCR2017Final.pdf.

3. J. Ahrens. Increasing scientific data insights about exascale class simulations un-
der power and storage constraints. IEEE Computer Graphics and Applications,
35(2):8–11, 2015.

15

4. J. Albrecht. Challenges for the lhc run 3: Computing and algorithms. Presentation
at International workshop on Advanced Computing and Analysis Techniques in
physics research, Jan 2016, UTFSM, Valparaso (Chile), 2016.

5. A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland,
P. O’Leary, V. Vishwanath, B. Whitlock, and E. W. Bethel. In situ methods, infras-
tructures, and applications on high performance computing platforms. Computer
Graphics Forum, 2016.

6. A. Biswas, S. Dutta, H.-W. Shen, and J. Woodring. An information-aware frame-
work for exploring multivariate data sets. IEEE Transaction on Visualization and
Computer Graphics, 19(12):2683–2692, 2013.

7. P. Bonoli and L. C. McInnes. Report of the workshop on integrated simula-
tions for magnetic fusion energy sciences, 2015. https://www.burningplasma.org/
resources/ref/Workshops2015/IS/ISFusionWorkshopReport.11.12.2015.pdf.

8. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams.
Discrete and Computational Geometry, 37:103–120, 2007.

9. P. Colella and P. R. Woodward. The piecewise parabolic method (ppm) for gas-
dynamical simulations. Journal of Computational Physics, 54(1):174–201, 1984.

10. M. Dorier, M. Dreher, T. Peterka, J. M. Wozniak, G. Antoniu, and B. Raffin.
Lessons learned from building in situ coupling frameworks. In 1st Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pages
19–24. ACM, 2015.

11. M. Dreher and B. Raffin. A flexible framework for asynchronous in situ and in
transit analytics for scientific simulations. In 14th International Symposium on
Cluster, Cloud and Grid Computing, pages 277–286. IEEE, 2014.

12. H. Edelsbrunner and J. Harer. Persistent homology — a survey. In Surveys on
Discrete and Computational Geometry. Twenty Years Later., volume 453 of Con-
temporary Mathematics, pages 257–282. American Mathematical Society, 2008.

13. H. Edelsbrunner and D. Morozov. Persistent homology: Theory and practice. In
Proceedings of the European Congress of Mathematics, 2012.

14. I. Foster, D. R. Kohr Jr, R. Krishnaiyer, and A. Choudhary. Double standards:
Bringing task parallelism to HPF via the Message Passing Interface. In ACM/IEEE
Conference on Supercomputing, pages 36–36. IEEE, 1996.

15. B. Fryxell, K. Olson, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice,
R. Rosner, J. Truran, and H. Tufo. FLASH: An adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes. The Astrophysical Journal
Supplement Series, 131(1):273, 2000.

16. H. Guo, W. He, T. Peterka, H.-W. Shen, S. Collis, and J. Helmus. Finite-time
Lyanpunov exponents and Lagrangian coherent structures in uncertain unsteady
flows. IEEE Transactions on Visualization and Computer Graphics, 22(6):1672–
1682, 2016.

17. H. Guo, W. He, S. Seo, H.-W. Shen, and T. Peterka. Extreme-scale stochastic par-
ticle tracing for uncertain unsteady flow analysis. In Proceedings of Supercomputing
2016 (SC16), submitted 2016.

18. S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel,
V. Morozov, G. Zagaris, T. Peterka, et al. HACC: Simulating sky surveys on
state-of-the-art supercomputing architectures. New Astronomy, 42:49–65, 2016.

19. S. Herbein, M. Matheny, M. Wezowicz, J. Krogel, J. Logan, J. Kim, S. Klasky, and
M. Taufer. Performance impact of I/O on QMCPack simulations at the petascale
and beyond. In Computational Science and Engineering (CSE), 2013 IEEE 16th
International Conference on, pages 92–99. IEEE, 2013.

16

20. H. Huang, H. Qin, S. Yoo, and D. Yu. Local anomaly descriptor: A robust unsu-
pervised algorithm for anomaly detection based on diffusion space. In 21st ACM
International Conference on Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012, pages 405–414, 2012.

21. H. Huang, H. Qin, S. Yoo, and D. Yu. A new anomaly detection algorithm based
on quantum mechanics. In 12th IEEE International Conference on Data Mining,
ICDM 2012, Brussels, Belgium, December 10-13, 2012, pages 900–905, 2012.

22. H. Huang, H. Qin, S. Yoo, and D. Yu. Physics-based anomaly detection defined
on manifold space. TKDD, 9(2):14:1–14:39, 2014.

23. J. Iverson, C. Kamath, and G. Karypis. Fast and effective lossy compression
algorithms for scientific datasets. In European Conference on Parallel Processing,
pages 843–856. Springer, 2012.

24. J. Jenkins, I. Arkatkar, S. Lakshminarasimhan, D. A. Boyuka II, E. R. Schendel,
N. Shah, S. Ethier, C.-S. Chang, J. Chen, H. Kolla, et al. ALACRITY: Analytics-
driven lossless data compression for rapid in-situ indexing, storing, and querying.
In Transactions on Large-Scale Data-and Knowledge-Centered Systems X, pages
95–114. Springer, 2013.

25. M. Kerbert, D. Morozov, and A. Nigmetov. Geometry helps to compare persis-
tence diagrams. In Proceedings of the Workshop on Algorithm Engineering and
Experiments (ALENEX), 2016.

26. Q. Koziol, N. Podhorszki, S. Klasky, Q. Liu, Y. Tian, M. Parashar, K. Schwan,
M. Wolf, and S. Lakshminarasimhan. ADIOS. In High Performance Parallel I/O,
pages 203–213. Chapman and Hall/CRC, 2014.

27. S. Ku, C. Chang, M. Adams, J. Cummings, F. Hinton, D. Keyes, S. Klasky, W. Lee,
Z. Lin, S. Parker, et al. Gyrokinetic particle simulation of neoclassical transport in
the pedestal/scrape-off region of a tokamak plasma. Journal of Physics: Conference
Series, 46(1):87, 2006.

28. K. Kumaran. Introduction to Mira. https://www.alcf.anl.gov/files/

bgq-perfengr.pdf. Visited June 20, 2016.
29. S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-H. Ku,

S. Ethier, J. Chen, C. S. Chang, S. Klasky, R. Latham, R. Ross, and N. F. Sama-
tova. ISABELA-QA: Query-driven analytics with ISABELA-compressed extreme-
scale scientific data. In International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages 31:1–31:11, New York, NY, USA,
2011. ACM.

30. S. Lakshminarasimhan, N. Shah, S. Ethier, S.-H. Ku, C.-S. Chang, S. Klasky,
R. Latham, R. Ross, and N. F. Samatova. ISABELA for effective in situ compres-
sion of scientific data. Concurrency and Computation: Practice and Experience,
25(4):524–540, 2013.

31. Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky,
R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan,
A. Shoshani, M. Wolf, K. Wu, and W. Yu. Hello ADIOS: The challenges and
lessons of developing leadership class I/O frameworks. Concurrency and Compu-
tation: Practice and Experience, 26(7):1453–1473, 2014.

32. X. Liu and H. Shen. Association analysis for visual exploration of multivariate
scientific data sets. IEEE Transaction on Visualization and Computer Graphics,
22(1):955–964, 2016.

33. Z. Liu, B. Wang, T. Wang, Y. Tian, C. Xu, Y. Wang, W. Yu, C. A. Cruz, S. Zhou,
T. Clune, et al. Profiling and improving I/O performance of a large-scale climate
scientific application. In 22nd International Conference on Computer Communi-
cation and Networks (ICCCN), pages 1–7. IEEE, 2013.

17

34. P. Malakar, V. Vishwanath, T. Munson, C. Knight, M. Hereld, S. Leyffer, and M. E.
Papka. Optimal scheduling of in-situ analysis for large-scale scientific simulations.
In International Conference for High Performance Computing, Networking, Stor-
age and Analysis, page 52. ACM, 2015.

35. L. Nowell. Science at extreme scale: Architectural challenges and op-
portunities, 2014. http://www.mcs.anl.gov/~hereld/doecgf2014/slides/

ScienceAtExtremeScale_DOECGF_Nowell_140424v2.pdf.
36. T. Perciano, D. Ushizima, E. W. Bethel, Y. D. Mizhahi, and J. A. Sethian.

Reduced-complexity image segmentation under parallel markov random field for-
mulation using graph partitioning. In 2016 IEEE International Conference on
Image Processing, page forthcoming. IEEE, 2016.

37. T. Perciano, D. Ushizima, E. W. Bethel, Y. D. Mizhahi, and J. A. Sethian.
Reduced-complexity image segmentation under parallel Markov random field for-
mulation using graph partitioning. In IEEE International Conference on Image
Processing, 2016.

38. J. R. Perilla, B. C. Goh, C. K. Cassidy, B. Liu, R. C. Bernardi, T. Rudack, H. Yu,
Z. Wu, and K. Schulten. Molecular dynamics simulations of large macromolecular
complexes. Current opinion in structural biology, 31:64–74, 2015.

39. T. Peterka, J. Kwan, A. Pope, H. Finkel, K. Heitmann, S. Habib, J. Wang, and
G. Zagaris. Meshing the universe: Integrating analysis in cosmological simulations.
In International Conference on High Performance Computing, Networking, Storage
and Analysis, pages 186–195. IEEE, 2012.

40. T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Lee, H.-W. Shen, W. Kendall, and
J. Huang. A study of parallel particle tracing for steady-state and time-varying
flow fields. In Proceedings of IPDPS 11, Anchorage AK, 2011.

41. F. C. S. Di. Fast error-bounded lossy HPC data compression with SZ. In IEEE
International Parallel and Distributed Processing Symposium, 2016.

42. F. C. S. Di. Fast error-bounded lossy HPC data compression with SZ. In IEEE
International Parallel and Distributed Processing Symposium, 2016.

43. E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. S. Chang, S. H. Ku, S. Ethier,
S. Klasky, R. Latham, R. Ross, and N. F. Samatova. ISOBAR preconditioner
for effective and high-throughput lossless data compression. In 2012 IEEE 28th
International Conference on Data Engineering, pages 138–149, April 2012.

44. A. Shekhar, K.-i. Nomura, R. K. Kalia, A. Nakano, and P. Vashishta. Nanobubble
collapse on a silica surface in water: Billion-atom reactive molecular dynamics
simulations. Physical Review Letters, 111(18):184503, 2013.

45. M. Slawinska, M. Clark, M. Wolf, T. Bode, H. Zou, P. Laguna, J. Logan, M. Kin-
sey, and S. Klasky. A Maya use case: Adaptable scientific workflows with ADIOS
for general relativistic astrophysics. In Conference on Extreme Science and Engi-
neering Discovery Environment: Gateway to Discovery, page 54. ACM, 2013.

46. D. Tao, S. Di, Z. Chen, and F. Cappello. Significantly improving lossy compression
for scientific data sets based on multidimensional prediction and error-controlled
quantization. In IEEE International Parallel and Distributed Processing Sympo-
sium, 2017.

47. P. Thibodeau. Coming by 2023, an exascale supercomputer
in the U.S. http://spectrum.ieee.org/computing/hardware/

when-will-we-have-an-exascale-supercomputer. Visited June 20, 2016.
48. D. Ushizima, H. Bale, E. W. Bethel, P. Ercius, B. Helms, H. Krishnan, L. Grinberg,

M. Haranczyk, A. Macdowell, K. Odziomek, D. Parkinson, T. Perciano, R. Ritchie,
and C. Yang. SAIDE: Scaling analytics for image-based data from experiments.
Journal of the Minerals, Metals and Materials Society, 2016. accepted.

18

49. P. Windstorm. Fixed-rate compressed floating-point arrays. IEEE Transactions
on Visualization and Computer Graphics, 20(12):2674–2683, Dec 2014.

50. J. M. Wozniak, T. G. Armstrong, K. C. Maheshwari, D. S. Katz, M. Wilde, and
I. T. Foster. Interlanguage parallel scripting for distributed-memory scientific com-
puting. In Proc. WORKS at SC, 2015.

51. L. Wu, K. Wu, A. Sim, M. Churchill, J. Y. Choi, A. Stathopoulos, C. Chang, and
S. Klasky. Towards real-time detection and tracking of blob-filaments in fusion
plasma big data. arXiv preprint arXiv:1505.03532, 2015.

52. Y. Zhao, M. Wilde, and I. Foster. Virtual Data Language: A typed workflow nota-
tion for diversely structured scientific data. In I. Taylor, E. Deelman, D. Gannon,
and M. Shields, editors, Workflows for eScience, pages 258–278. Springer, 2007.

